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Marriage of Clifford Algebra and Finsler Geometry:
A Lineage for Unification?
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The teleparallel Finsler connections on Riemannian metrics are more compatible
with algebraic structure than the usual metric-compatible connections. Tangent
and cotangent Clifford algebras come together with Finslerian teleparallelism to
give rise to a Kałuża–Klein structure endowed with a canonical connection. The
implications of this convergence for unification are explored.

1. INTRODUCTION

Riemannian geometry appeared to be incompatible with the algebraic
structure of Euclidean geometry represented by the Euclidean group. In
the early 1920s, Cartan showed the principal bundle way for incorporating
Euclidean concepts in Riemannian geometry. The aim of this paper is to
show that, provided that one assumes teleparallelism (TP), the frame bundle
structure of Finslerian geometry, a generalization of Riemannian geometry,
is more suitable than that of Riemannian geometry for the integration of
algebraic structure into generalized geometry, with important implications
for physics.

This paper complements recent work (Vargas and Torr, 2000) where we
discussed the Kähler and Hestenes inclusions of Clifford algebras in the
calculus and showed that the inner workings of the Kähler calculus prompt
its own evolution into a calculus in a teleparallel Kałuża–Klein (KK) space.
In that paper, we dealt only with the “Clifford algebra spouse” of the marriage
referred to in the present title. In this paper, we are concerned with the “Finsler
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spouse,” namely the evolution of the Finsler space into the aforementioned KK
space.

In Section 4, we summarize TP, Finslerian teleparallelism (FTP), and
an “enhanced” Kähler calculus for TP, as it is endowed with two Clifford
algebras, both of them crucial. In Section 5, we compare our use of TP with
other uses made of it. Since the enhanced Kähler calculus cannot be carried
forward to FTP, we show the evolution of the FTP structure into a canonical
KK space based on the same horizontal differential invariants (Section 6).
This KK space admits the enhanced Kähler calculus. In Section 7, virtually
canonical “super-Dirac” equations are shown, giving rise to a formidable
geometric platform from which to launch field quantization, if so desired, In
Section 8, the intimate relation between the gravitational sector of TP and
quantum mechanics (QM) is discussed.

2. ON THE EVOLUTION OF FINSLER GEOMETRY

Finsler geometry receives its name from the doctoral thesis of Paul
Finsler (1918), and deals with curves and surfaces in spaces endowed with
metrics more general than the Riemannian ones. These metrics had been
briefly mentioned by Riemann (1854) in his lecture for admission to the
faculty at Göttingen, the same lecture where he introduced the metrics that
go by his name. Although he eventually considered the issue of the curvature
for Riemannian metrics (Riemann, 1861), he did not consider any similar
problem for Finsler metrics. Even nowadays, Finsler geometry is often defined
from the metric (but not affine) perspective of being the geometry of spaces
where the length of curves is defined by

s 5 # L1xi,
dxi

dt 2 dt (1)

A more general and modern perspective of Finsler geometry does not resort
to curves for its definition. It rather involves affine structures (Vargas and
Torr, 1993).

Let A denote the “Finslerian generalization” of “generalized affine geom-
etry” B, both A and B comprising affine curvature and torsion. B in turn
generalizes the “elementary affine geometry” or “geometry of the affine
group,” denoted C. In essence, the main component of B is the theory of affine
connections. We shall refer to A as the theory of affine-Finsler connections. A,
B, and C have metric-compatible specializations, denoted here A8, B8, and
C8. In C8, the metric is Euclidean, or equivalent to it by a coordinate transfor-
mation. In B8 proper, the metric is Riemannian or, if Euclidean, the torsion
of the connection is not zero. Similarly, in A8, the metric may be Finslerian,
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but need not be so: if the metric is Riemannian, the Finslerian character of
the geometry may come from the connection, i.e., from the rule for geometric
equality of vectors at different points of the manifold, or parallel transport.
A notable issue in A8 is constituted by the so-called Cartan–Finsler or Cartan
connection (Cartan, 1934). It is the canonical connection of distances of the
general form given by Eq. (1). It is clear that, since one gets the Levi-Civita
connection in the particular case that the distance is Riemannian, theoretical
physics is short-changed by the limited concept of Finsler geometry embodied
in the definition of this geometry given in the previous paragraph. We said
“distance” because, unlike in Riemannian geometry, one must distinguish
between the distance and the metric in Finsler geometry, as we shall see in
the next section. We deal precisely with an option left out by such a restricted
definition, namely teleparallel Finsler connections on Riemannian metrics.

The Cartan–Finsler connection, which constitutes the central topic of
Cartan’s monograph on Finsler spaces (Cartan, 1934), was treated without
reference to general theories A and A8. Cartan did not return to this area of
research, thus failing to develop a theory of A and A8 that would parallel his
work in Cartan (1923), where B8 appeared as just a particular case of B. It
is uncharacteristic that, in the monograph, Cartan used the tensor calculus,
which is especially cumbersome in Finsler geometry, and that he did not
resort to bundles. In the 1940s, Chern covered approximately the same ground
as Cartan, but in a more elegant and traditional Cartan style, using differential
forms and what we shall later refer to as the Finsler bundle (Chern, 1948).
Although Chern introduced the appropriate soldering and connection forms,
he did not explain what are the bases of the tangent bundle that are dual to
his n 1 n2 differential forms. Both eminent geometers thus failed to develop
a formal theory of affine Finsler connections. In addition, as late as the 1990s,
Chern still subscribed to the definition of Finsler geometry as in Eq, (1) (Bao
and Chern, 1993).

Although several among the recent texts on the general area of Finsler
geometry no longer present the foundations of this theory in terms of the
length of curves, it is difficult to recognize in them the Finsler bundles. Also,
their concepts of Finsler connections are often so involved that it is difficult
to realize how those connections relate to the Lie groups and algebras of
“flat affine and Euclidean geometry.” A related review is provided in Section
2 of Vargas and Torr (1993), where references to the Finsler literature are
given. We refrain from providing such references here since the proliferation
of approaches can only confuse the reader and even challenge the expert.
For instance, it took decades to realize that two famous connections, the
Chern and Rund connections, are actually one and the same (Anastasiei, 1996).

Our development of a concept of affine Finsler connections involving
bundles is mainly due to Clifton, as explained elsewhere (Vargas and Torr,
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1993). It differs from other approaches in that it satisfies all of the following
conditions: (a) Finsler connections are defined even in the absence of a metric
function and/or metric, (b) the Finslerian character of the geometry arises
from the connection, (c) the connection is viewed as a rule relating tangent
vectors to, say, spacetime that have been moved to phase-spacetime (a mani-
fold with coordinates t, xi, u j, where u j denotes velocities), (d) when a metric
is introduced, the emphasis of our work is on Finslerian connections on
Riemannian metrics, which (e) allows us to avoid the thorny issue of metric
compatibility with properly Finslerian metrics. Our development incorporates
Cartan’s view of metric geometry as a particular case of affine geometry.
The general connections will be referred to as affine Finsler connections. If
we further endow the manifold with a Riemannian metric, we restrict the
bases to the usual frames and refer to metric Finsler connections and canonical
metric Finsler geometry. In noncanonical metric Finsler geometry, the ortho-
normal bases are replaced with a subset of bases which are not orthonormal,
but can be put in a one-to-one correspondence with them and assume their
role (Vargas and Torr, 1996). Here, we shall be interested in the canonical
case and shall not concern ourselves with the issue of whether existing
experimental tests of isotropy (Haugan and Kaufmann, 1995) put constraints
on the usefulness of Finsler metrics, which are anisotropic in a deep sense,
in physics. Finsler metrics seem to arouse interest among cosmologists (S.
Vacaru, private communication).

The use of Finsler metrics in avant-garde physical theories has been
proposed by Vacaru (1997a, b). Apart from the fact that we do not use such
metrics in this work, the unused richness present in the tangent bundle makes
resorting to such untested physical theories an unnecessary complication and
a distraction from our main course of action: since the mathematics that is
involved in the geometric theory of Dirac equations (Vargas and Torr, 2000)
and in FTP has a life of its own, we let it take us where it may.

3. THE FINSLER GEOMETRY OF MOVING FRAMES

The tangent vector at a point m P M of a differentiable manifold M
is an equivalence class of curves [xm(l), (a # l # b)] through m which
give the same values for dxm/dl at m P M. The set of numbers dxm/dl at
m change for any given curve under changes of coordinate system, but the
changes are the same for all curves in the same equivalence class. These
classes are therefore independent of coordinate system. Let TM be the
tangent bundle of M, or set of all its tangent vectors. Let T0M be the set
of all the nonzero vectors in TM. In T0M, we regard two vectors as equivalent
if they belong to the same vector space, i,e., they are tangent at the same
point m P M and they differ by a positive factor. The quotient of T0M by
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this equivalence relation is called the sphere bundle SM. This is the manifold
which, when M is endowed with a Lorentzian metric, it has the natural
interpretation of geometric phase-spacetime. Its dimension is 2n 2 1, where
n is the dimension of M. We proceed to introduce coordinates on SM. The
sets (xm, ym 5 dxm/dl) constitute a coordinate system on TM. Given the
way in which SM was constructed from T0M, we need only consider curves
on M where the dxm/dl and, therefore, the ym are not all zero. It is clear
that the ratios ui 5 yi/y0 constitute a coordinate system in regions where y0

is not zero, the n values of the indices being (0, i) 5 (0, 1, . . . , n 2 1).
Among the curves on SM, there are those called natural liftings, such that
the ui(l) are not independent of the xm(l), but we rather have ui 5 dxi/dx0.
SM is spanned by (dxm, dui).

The set BM of tangent bases is usually fibrated over M with the linear
group acting on the fibers. However, it may also be fibrated over SM via an
isomorphism between tangent vectors to M and bases of “reduced” tangent
vectors to SM (Vargas and Torr, 1993). “Reduced” stands for the fact that
the extra n 2 1 dimensions of the tangent vectors to SM have been made to
disappear. The isomorphism gives rise to a refibration of BM as a frame
bundle of “special” bases (of reduced tangent vectors). It will be denoted as
the Finsler bundle of bases, with symbol BM → SM. “Special” means that
the first vector in the bases of the fiber over s P SM belongs to the equivalence
class s. A more descriptive term could be “adapted.” The fibers are standard,
in the sense that the same group acts appropriately on all of them, namely
the group of all transformations that leave the direction of the first basis
vector unchanged. One could have chosen the second, third, . . . , basis vector
to play this role, but only one. The group acting on the fibers becomes most
familiar if we restrict the bases to the frames (orthonormal bases), in which
case the Finsler bundle of bases becomes the canonical Finsler bundle of
frames, denoted as B8M → SM. For other Finsler bundles of frames, see
Vargas and Torr (1996).

In the canonical Finsler bundle of frames, the group in the fibers is
O(n 2 1) for properly Riemannian metrics. For Lorentzian signature, the
group in the fibers also is O(n 2 1) if the direction chosen to perform the
refibration is a time direction. Otherwise, the group would be O(1, n 2 2).
In this case, one artificially puts together the time direction with an (n 2 2)-
dimensional spatial subspace, the remaining spatial subspace being used
to create the Finslerian fibration. We shall of course ignore this unnatural
possibility. The argument illustrates, however, that in the properly Riemannian
case, one of the spatial directions is unnaturally singled out to play the role
that the time direction naturally plays when the signature is Lorentzian. Hence
“the canonical signature” of Finsler geometry is the Lorentzian signature,
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which raises the issue of whether the Minkowski spacetime should be consid-
ered as endowed with a pseudometric or as a Finsler space endowed with a
particularly simple Finsler function.

The usual affine connections are specified by a set of n 1 n2 independent
differential 1-forms vm and vl

n on the set of bases BM. They satisfy certain
well-known properties and are such that dvm 2 vn ∧ vm

n and dvm
l 2

vn
l ∧ vm

n take the special form dvm 2 vn ∧ vm
n 5 Rm

nl vn ∧ vl and dvm
l 2

vn
l ∧ vm

n 5 Rl
m

npvn ∧ vp. The most general 2-forms on the Finsler bundle
of bases would be linear combinations of the vn ∧ vl, vp ∧ vm

n , and
vn

l ∧ vm
p. In a similar vein, one can define an affine Finsler connection

as follows.
A Finsler bundle of bases is said to be endowed with an affine-Finsler

connection if it is endowed with n 1 n2 linearly independent 1-forms (vm,
vl

n) such that:

(a) The vm are the soldering forms, i.e., the result of applying all linear
transformations which have nonvanishing determinant to the dxm.

(b) The vi
0 are linear combinations of the dxm and dui, and thus vanish

on the fibers of BM → SM.
(c) On the same fibers, the (pullbacks of the) forms v0

0, vi
0, and vk

j

become the invariant forms of the group that leaves the direction
of the first basis vector unchanged.

(d) The differential forms dvm 2 vn ∧ vm
n and dvm

l 2 vn
l ∧ vm

n ,
respectively, called the torsion and affine curvature, are of the
special form

dvm 2 vn ∧ vm
n 5 Rm

nlvn ∧ vl 1 Sm
nivn ∧ vi

0 (2)

dvm
l 2 vn

l ∧ vm
n 5 Rl

m
npvn ∧ vp 1 Sl

m
nivn ∧ vi

0 1 Tl
m

ijvi
0 ∧ v j

0 (3)

One can show that terms of the T type (combinations of the vi
0 ∧ v j

0)
cannot appear in the torsion. Notice how postulates (a)–(c) define the Finsler
bundle. The right-hand sides of Eqs. (2)–(3) are now more general than for
the usual affine connections, but not as general as the most general 2-forms
on the set of all bases. This degree of generality guarantees that the transport
of vectors, though path dependent in general, is independent of cross section
(Vargas and Torr, 1993).

Because the v0 and vi are the soldering forms, they are of the type

v0 5 A0
0 dt 1 A0

j dx j, vi 5 Ai
0 dt 1 Ai

j dx j

L [ A0
0 1 A0

j u j, Aj [ A0
j , s j [ dx j 2 u j dt

v0 5 A0
0 dt 1 A0

j u j dt 1 A0
j (dx j 2 u j dt) 5 L dt 1 Ajs j (4)
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vi 5 Ai
j (dx j 2 u j dt) 5 Ai

js j (5)

The curves on SM in which we are interested are the so-called natural liftings.
They satisfy s j 5 0, equivalently v j 5 0. Notice that v0 is the only vm that
is not zero on natural liftings. Since, modulo v j, we have

# ds 5 # F(v0)2 6 o
j

(v j)2G1/2

5 # v0 5 # L dt (6)

it would seem that a concept of distance is defined even without a metric.
However, L dt changes from section to section, which is obvious if one
considers the case when one multiplies the e0 vector by a factor. It is only
when one has restricted the bundle in appropriate ways (like the restriction
to the canonical Finsler bundle of frames) that * ds becomes independent
of section. This is the way in which metric Finsler geometry becomes a
specialization of affine Finsler geometry. The distance 1-form of Riemannian
metrics is L dt 5 (g00 1 2g0iui 1 gijuiu j)1/2 dt, where the g’s are functions
of the x coordinates only.

A most important feature of this view of Finsler geometry is that the
horizontal forms are the vm and vn

0. This means that one can reconstruct the
whole Finsler bundle (affine or metric) from a knowledge of these forms on
a section of the same.

4. TELEPARALLELISM AND THE KÄHLER CALCULUS

In this section, we prepare the ground for a later reformulation of Finsler-
ian teleparallelism (FTP) as a KK type theory endowed with a Kähler calculus
based on two intertwined Clifford algebras. In Vargas and Torr (2000), we
showed that the natural evolution of the standard Kähler calculus also leads
one to the same KK space, endowed with a canonical teleparallel connection
and without resort to Finsler geometry. The advantage of reaching the same
KK structure through FTP, as in this paper, is that comparison with theoretical
physics insinuates a canonical Dirac equation of great algebraic richness.

In Section 4.1, we present some immediate consequences for physical
theory of a teleparallel spacetime connection of the usual, pre-Finslerian type.
In Section 4.2, we discuss the consequences for physical theory of the original
Kähler calculus, which is based on the Levi-Civita connection. In Section
4.3, we elaborate on increased opportunities for the physics if the Kähler
calculus is developed with a teleparallel connection. In Section 4.4, we
consider further enhancements for physics arising from the assumption that
the connection of spacetime used in the Kähler calculus is not only teleparallel,
but also Finslerian.
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4.1. Consequences of Teleparallel Connections

In late 1915, Einstein created the theory of general relativity (GR). At
that point, he could not have explained what affine curvature is in terms of
transport of vectors, since the concept was introduced in mathematics only
in 1917, by Levi-Civita. The curvature that Einstein considered was the
metric curvature. TP is synonymous with the affine connection having zero
affine curvature. It implies that there is an absolute or path-independent
concept of equality of vectors from different tangent spaces. The following
example is due to Cartan (1924a). The earth, punctured at the poles, is
endowed with a teleparallel connection when we define as lines of constant
direction the Rhumb lines, which include the meridians and the parallels.
The unit vector in the North direction at one point of the earth is defined as
being equal to the unit vector in the North direction at any other point. The
same applies to other directions. The earth then has zero affine curvature. It,
however, remains round, i.e., has non-Euclidean metric relations and nonzero
metric curvature. Hence, because of historical reasons, 1915-GR could only
have involved the metric curvature of spacetime. Present-day GR texts, how-
ever, introduce Riemannian spaces as already endowed with the Levi-Civita
affine connection, even though. Einstein did not make any assumptions about
the affine connection of spacetime.

The statement that the affine curvature of spacetime is zero can be
written as an equation where the left-hand side is the metric curvature and
the right-hand side also is completely geometric. TP is not incompatible in
principle with 1915 (i.e., pre-affine) GR if one is able to identify this geometric
right-hand side with the physical right-hand side of the standard Einstein
equations. The geometric equations:

(a) Actually come in a larger number than in GR as they specify the
full curvature and not just the Einstein tensor.

(b) Include a greater variety of tensors on the right-hand side of the
subset obtained by their Einstein contraction, with the possibility,
in principle, of accommodating in them the energy of fields of all
types (Vargas and Torr, 1999b) and the gravitational energy in
particular (Vargas and Torr, 1999a).

(c) Imply localization of energy.
(d) And come accompanied by field equations for the nongravitational

sector of the theory, because the first Bianchi identity for TP,
whether Finslerian or not, implies that the exterior covariant deriva-
tive of the torsion is zero

dV 5 0 (7)

where V is the torsion, and d is the exterior derivative when
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acting on a scalar-valued differential form and the exterior covariant
derivative when acting on a tensor or Clifford-valued differential
form, like the torsion.

4.2. Consequences of the Kähler Calculus for Levi-Civita
Connections

The Kähler calculus is a calculus of tensor-valued differential forms that
is to the Clifford product of differential forms what the Cartan calculus is to
the exterior product of these forms (Kähler, 1960, 1962). It comprises a
general theory of Dirac-type equations, which are of the form

­u 5 a ∨ u (8)

where ­ denotes the sum of the exterior and interior covariant derivatives,
a is a given tensor-valued Clifform, and u is the tensor-valued Clifform to be
found. As formulated by Kähler (1961), the Dirac equation with EM coupling

i"gm ­mc 5 1mc 1
e
c

gmAm2c (9)

is the following simple particular case of Eq. (8):

2i" ­u 5 (im 1 eA)u (10)

The solutions u are scalar-valued in principle, given the scalar-valuedness of
2m 1 ieA itself (there is no advantage in choosing any other valuedness).
The original Dirac equation thus is just an entry-level equation. Indeed, a
vector-valued or tensor-valued form would cause an increase in the richness
of components of the solutions u so explosive as to be even unwanted (Vargas
and Torr, 2000). Kähler considered tensor-valued differential forms (on spaces
endowed with Levi-Civita connections). It is clear that, since the Clifford
algebra is a quotient algebra of the tensor algebra, a calculus of Clifford-
valued differential forms immediately follows from Kähler’s work. This
solves the problem of the “infinite explosion of valuedness” (Vargas and
Torr, 2000). Physics has, therefore, barely explored the potential of spacetime
Dirac equations, i.e., Kähler–Dirac equations for different a’s, as opposed
to gauge-Dirac equations. As Kähler himself pointed out (Kähler, 1962), his
“calculus is for both, the quantum and relativistic theories, though its worth
remains to be proven through its actual use by physicists.” The issue now is the
identification of the geometric object that generalizes the geometric potential.

The Kähler equation also comprises both fermionic and bosonic solutions
(Vargas and Torr, 1998), the term fermionic being used here for solutions of
Eq. (8) with nonnull a. The term bosonic solution is here used for what
Kähler denotes as harmonic functions, which satisfy ­u 5 0 (Kähler, 1960).
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Of particular interest is the property that the product of a fermionic solution
for a given a and a bosonic solution is another fermionic solution for the
same a.

4.3. Consequences of the Teleparallel Kähler Calculus

When postulating TP for unification, Einstein was hoping to get quantum
mechanical effects through overdetermined systems of rather classical equa-
tions, admitting solutions only for discrete eigenvalues. With the different
enhancements of the Kähler calculus, Dirac-type equations become increas-
ingly geometric and one need not resort to this mechanism for quantization.
Although Kähler developed his calculus for just the Levi-Civita connection,
it is possible to extend his calculus to arbitrary (pre-Finslerian) connections,
the teleparallel ones in particular (Vargas and Torr, 1998). Although the
important property that the product of a fermionic and a bosonic solution is
another fermionic solution for the same a no longer holds for arbitrary
connections, this property is not lost since one recovers the Kähler calculus
for the Levi-Civita connection as a weak torsion approximation. So there is
altogether an increase in theoretical richness in this fact, apart from the
benefit of being able to identify all the tangent spaces and therefore all the
tangent algebras.

A general feature of the Kähler calculi is that they make the specification
of the interior covariant derivative the natural complement to the specification
of the exterior covariant derivative. Since TP provides the exterior covariant
derivative of the torsion, Eq. (7), the completion of the determination of the
torsion in TP is fulfilled through specification of its interior covariant
derivative,

dV 5 J (11)

where J is, at this point, some current which one might try to describe
phenomenologically (like the current in Maxwell’s electrodynamics and the
energy-momentum tensor in Einstein’s equations). Equations (7) and (11)
are to the vector-valued differential form torsion V what Maxwell’s equations
are to the EM field F,

dF 5 0, dF 5 j (12)

In spite of these advantages of pre-Finslerian TP, there are two problems
with it. One of them already shows at the classical level, namely the matching
of the torsion with the EM field. As for the Dirac sector of the theory, the
Kähler calculus has the following problem, regardless of connection. Consider
the double Clifford product of the translation element, dP 5 vm em, with itself :
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dP(∨, ∨) dP 5 dxm ∨ dxn em ∨ en 5 dxm ∧ dxn em ∧ en 1 0 1 0 1 gmngmn

5 dxm ∧ dxn em ∧ en 1 4 (13)

The last term, 4, is a scalar-valued differential 0-form. In the same way as
an r-form is evaluated (read integrated) on r-surfaces, one should assign in
principle the value 4 to, possibly, each spacetime point. This peculiar feature
has the potential to become a source of divergences in a physical theory
based on this calculus. The solution is provided by Finslerian TP, or FTP.
Let us first see what FTP has to offer to the classical sector of the physics.

4.4. Consequences of the Finslerian Teleparallel Kähler Calculus

The Finslerian fibration separates the Lorentz boosts from the rotations
of tangent vectors (Vargas and Torr, 1999a). If, as Cartan argued (Cartan,
1924b), the EM form is represented by a differential 2-form in its role as a
surface integrand (here denoted as a cotangent object) rather than by a tangent
2-tensor, the Lorentz group retains its relevance as a group of (passive)
transformations, namely the subgroup associated with inertial frames of the
infinite group of coordinate transformations. This decoupling of the boosts
from the Finslerian fibers of tangent frames, where only the rotation group
O(3) acts, separates the temporal part from the spatial part of tangent vectors.
Under this new group in the fibers, the V0 component of the torsion behaves
like a differential 2-form, i.e., like the EM field F, since the temparal compo-
nent for tangent indices behaves like a scalar under the group O(3).

The base space of the Finsler bundle of spacetime (i.e., the geometric
phase-spacetime) has a remarkable property, namely that the subluminal 4-
velocities constitute a canonical field over it (Vargas and Torr, 1999b). In
the “acceleration vector-valued 1-form” that corresponds to this “velocity
vector-valued 0-form,” one is able to identify the Lorentz force and to tenta-
tively identify different pieces of the torsion with different interactions. This
also explains the extremely short range of the weak interactions (which have
zero classical range), which in turn allows for the possibility of a nonconstant
cosmological “constant,” etc.

Once an interpretation has been provided for the different pieces of the
torsion and, in particular, for the EM field, one can start to extract conse-
quences from the geometric Einstein equations referred to above (Vargas and
Torr, 1999a). One such consequence is that nonhomogeneous electric and
magnetic fields act as sources of gravitational fields (this is in addition to
the extremely negligible deformation of the spacetime structure through the
quadratic terms in the energy-momentum tensor of these fields). These effects
may be in principle the cause of the discrepant measurements of Newton’s
constant G (Vargas and Torr, 1999a).
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If the torsion generalizes the EM field, then the potential for the torsion,
namely the translational line element, generalizes the EM potential. One
should use this geometric potential as the factor a in the Kähler equation,
thus obtaining a controlled explosion of valuedness, i.e., confined to the
finite dimensionality of the Clifford algebra. The problem with this structure,
however, is that, whereas the tangent frames that we use in the Finsler bundle
are 4-dimensional, the base space of the bundle is a 7-dimensional manifold
(recall that the tangent Finsler bundle is constituted by bases of reduced
tangent vectors). Related to this, TP no longer provides constant sections in
the Finsler bundle, not even in the Finsler bundle of Minkowski spacetime
(the sections are too large, so to speak). It is at this point that the reformulation
of FTP as a KK theory enters the picture. But, first, let us deal with the
potential interference in the mind of readers between this version of TP and
the alternative version(s) of it in the literature.

5. COMPARISON OF APPROACHES TO TELEPARALLELISM

Our approach to teleparallelism (TP), which we have shown (Vargas
and Torr, 1999a) to be closely related to Einstein’s (1930a, b) approach, has
been overlooked in the literature, in spite of its naturalness. It is natural
because the teleparallel version of the geometric equations known as the
second equation of structure and the first Bianchi identity become field
equations, namely generalizations of the Einstein and first pair of Maxwell’s
equations. The theory which thus emerges is completely inimical to the
teleparallel theories comprised in the general framework of what is known
as metric-affine theory of gravity (Hehl et al., 1995). The reason behind their
opposing characters is that the marriage of Clifford algebra and Finsler
geometry does not give rise just to a gravitational theory, but rather to a
full classical sector and a virtually canonical geometric Dirac sector. The
emergence of so different theories from the same postulate has to do with
the fact that the teleparallel alternatives to our proposal do not contain the
structural equations of TP as field equations, but rather derive these through
ad hoc variations that use reasonable, but ad hoc actions: these involve the
curvature as a constraint contributing a Lagrange multiplier term to the action,
or they involve only the Ricci contraction, again as a constraint, or do not
involve the affine curvature at all, and even then there are several options
(Müller-Hoissen and Nitsch, 1985). This difference in character would exist
even if our use of TP concerned only the usual, not-yet-Finslerian theory of
affine connections, were it not for the fact that the identification of geometric
quantities with physical fields is possible only in Finsler bundles. Thus,
nothing of what these theories have to say has any bearing whatsoever upon
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the statements and equations of our proposal, and the statements of the
paragraph that contains Eq. (7) in particular.

In spite of these considerations, it is worth dealing with specific issues
that arise in those alternatives, since they illustrate the profound implications
of our proposal. In spite of the existence of many versions of teleparallel
metric-affine gravity, there seems to be agreement among practitioners that,
to different degrees depending on the specific theory, difficulties arise which
are known as the problem with the Cauchy formulation. It consists in nonpre-
dictable behavior of the torsion (Kopczynski, 1982) as well as other problems
caused by the attempt to remove this unpredictability (Gönner and Müller-
Hoissen, 1984). The Cauchy problem of teleparallel metric theories of gravity
is in essence the same as in GR, in consonance with the belief that (with blatant
disregard for the different implications of the Levi-Civita and teleparallel
connections for the problem of equality of vectors and localization of energy
in GR) some teleparallel theories in Riemann–Cartan spacetime are viewed
as empirically indistinguishable from GR (Mielke, 1992) and classically
equivalent to it (Mielke, 1999). On the other hand, the Cauchy problem of
the present proposal is the trivial one which corresponds to the specification
of the full curvature, which is amply discussed in Section 7 for its quantum
mechanical implications. As pointed out by Cartan (1922), “Einstein’s gravita-
tional equations amount to only ten linear combinations of Riemann’s 20
symbols. . . It is quite disconcerting that only these quantities have been
considered by physicists.” It is high time to consider the implications of the
fact that TP implies 20 curvature equations rather than just 10.

Equation (8), which is instrumental in obtaining the torsion, is our sole
field equation which is not literally an equation of structure or Bianchi
identity. Notice, however, that the first equation of structure specifies the
torsion and that the first Bianchi identity (FBI) specifies its exterior covariant
derivative. Since we postulate the FBI as a field equation, the specification
of the torsion (in the sense of specifying its total derivative in the sense of
Kähler) is completed by the specification of the interior covariant derivative
(also in the sense of Kähler). This connection-dependent derivative is obtained
within the tenets of the Kähler calculus, and its mathematical suitability is
unassailable by any theory which does not resort to this calculus (note that
the interior covariant derivative of the Kähler calculus does not coincide in
general with the one obtained through the Hodge dual, the Levi-Civita connec-
tion being an exception). This theory thus transcends in character anything
offered by metric-affine theory (of gravity, that is, as its authors intended it).

The widely held belief that the torsion cannot generalize the EM field
because of the mismatch between the respective symmetries [translational in
the case of the torsion and U(1) in the case of the EM field] ignores the
richness and subtleties of Finsler geometry, as shown in later sections. The
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correct perception of the illegitimate character of such identification in the
usual or pre-Finslerian context (for instance, a boost would mix different
parts of the torsion and would amount to mixing EM and weak fields in a
clearly unphysical manner) together with the lack of in-depth knowledge of
Finsler geometry may have prompted physicists to look for the less natural
interpretations of TP that pervade the literature.

6. KALUŻA–KLEIN REFORMULATION OF FINSLERIAN
TELEPARALLELISM

The bundle approach to Finsler geometry that we motivated in Section
2 and outlined in Section 3 alerts us to the fact that the basic differential
invariants defining the Finsler geometry are the vm and the vi

0. Together with
the O(3) group, they contain the essence of the geometry since one can
reconstruct from them the whole Finsler bundle. These differential invariants
define the differential translation dP and the “acceleration 1-form”, du
(5 de0 5 vi

0 ei). Since the form that is dual to u is ds, the following
construction suggests itself immediately.

Let M 4 be a 4-manifold endowed with a pseudo-Riemannian metric of
Lorentzian signature and a compatible teleparallel connection. The tangent
spaces at different points on M 4 can be identified so as to constitute just one
vector space V 4. Let am be a constant (pseudo)-orthonormal basis of V 4 and
let vm be the basis of differential 1-forms dual to am. Let u be a unit tangent
vector in the tangent space V 1 to a differentiable manifold M 1. Let s be the
coordinate on M 1 dual to the unit tangent vector u. On V 4 ^ V 1, let u be
the fifth element a4 of bases (aA), with the indices A, B, . . . running from 0
to 4. Needless to say, v4 5 ds. The only unknowns in this metric are the
g4m, i.e., we have

gAB 5 aA ? aB 5 1
1 0 0 0 g40

0 21 0 0 g41

0 0 21 0 g42

0 0 0 21 g43

g40 g41 g42 g43 21
2 (14)

There is also the spacetime metric, which is buried in the soldering forms
vm. It would become part of gAB if we did use tangent vectors dual to
coordinate bases of 1-forms. We do not, since coordinate tangent bases are
not constant and their use complicates the form of the canonical connection
that we are about to obtain.

A translation element dp is defined on M 4 % M 1 by dp 5 vmam 1 dsu.
One requires
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vA ? vB 5 0 for A Þ B (15)

For A 5 B, we leave the product indicated, vA ? vA. These are functions
whose interpretation will become clear in the following.

It is clear that one can obtain a (pseudo)-orthonormal canonical tangent
basis with signature (1, 21, 21, 21, 21). The basis of 1-forms dual to the
(eA) is readily obtained by means of

dp 5 aAvA 5 eAv8A (16)

The result is

v80 5 v0 1 g40 ds, v8i 5 vi 1 g4i ds, v84 5G1/2 ds (17)

G [ 1 1 (g40)2 2 (g41)2 2 (g42)2 2 (g43)2 (18)

It is important to note that, whereas vA ? vB is zero for A Þ B, the same is
not the case for v8A ? v8B. Also, with the canonical basis, the interpretation
of the unit vector in the “fifth dimension” as the 4-velocity is lost.

To obtain the metric tensor without tensor products other than the exterior
one, we postulate a null double dot product of dp with itself :

dp(?, ?) dp 5 vA ? vBaA ? aB 5 v0 ? v0 2 v1 ? v1 2 . . . 2 ds ? ds (19)

so that the equation

ds ? ds 5 v0 ? v0 2 v1 ? v1 2 v2 ? v2 2 v3 ? v3 (20)

becomes an alternative form of the metric using only products pertaining to
Clifford algebra. Furthermore, instead of Eq. (13), we now have

dp(∨, ∨) dp 5 dp(∧, ∧) dp (21)

Note the disappearance of the unwanted term 4.
One obtains a canonical connection for spacetime TP by setting, instead

of null torsion, the spacetime part of the connection to zero,

vb
a 5 0 (22)

(i.e., spacetime teleparallelism) and metric compatibility:

vAB 1 vBA 5 dgAB (23)

where vAB [ vC
AgCB. The only nonnull components of the connection are

v4r 5 dg4r, vr
4 5 hr(v4r 2 g4rv4

4), v4
4 5 G21hrg4r dg4r (24)

The connection components with mixed indices satisfy the relationship

v4
4 5 vr

4g4r (25)

For details regarding the obtaining of these results see Vargas and Torr
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(1997a). It is interesting to notice that we assumed vb
a 5 0 and, using metric

compatibility, obtained vB
a 5 0, equivalently dea 5 0.

With this connection, with the aforementioned dot products in both
algebras and with the standard rule of the Kähler calculus to obtain interior
covariant derivatives, one gets (Vargas and Torr, 2000), for a 1-form a 5 amvm,

da 5 a0;0v0 ? v0 1 a1;1v1 ? v1 1 a2;2v2 ? v2 1 a3;3v3 ? v3 (26)

This is a major result that we wanted to reach to make a point. The interior
covariant derivative and therefore the Kähler derivative of a 1-form has been
determined. Instead of the traditional am;

m, we have a function to be integrated
on the trajectories of particles. Hence the disappearance of the constant term
in Eq. (13) is accompanied by this new feature, which we expect to have an
impact on further developments of the theory.

To summarize, the double Clifford algebra is defined by the fields g4m

and the functions v0 ? v0, v1 ? v1, v2 ? v2, and v3 ? v3 of spacetime curves.
These are in turn given by the g8mn, defined by dP ? dP 5 g8mn dxm dxn. Our
connection is the canonical connection of M 4 % M 1. Finslerian TP thus has
a well-defined and canonical Kähler derivative. Hence, there is a canonical
left-hand side of the Eq. (8). The issue then is whether there also is a canonical
right-hand side, i.e., a canonical Clifford-valued Clifform a.

7. (QUASI-)CANONICAL KÄHLER–DIRAC EQUATIONS

We have shown the potential of FTP to produce a superseding theory
of EM and GR (Vargas and Torr, 1999a) and to encompass in the torsion all
the nongravitational fields (Vargas and Torr, 1999b). In this section, we show
that the differential invariants that define the teleparallel Finsler space almost
determine a canonical Kähler–Dirac equation and that the gauge transforma-
tions may after all be spacetime symmetries. A better understanding of this
novel proposal might conceivably yield a unique Kähler–Dirac equation. In
the next section, we show how Finslerian TP brings together GR and the
Dirac sector.

The left-hand side of the hypothesized quasicanonical Kähler–Dirac
equation has been determined, since the action of the operator ­ is well
defined by the canonical connection of the teleparallel KK space. The issue
then is to find a canonical a for Eq. (8), or at least one which may be
determined on canonical mathematical grounds except for, perhaps, minor
help from physics. The a must depend only on the invariants that define the
structure and should not be unlike the potential that goes into the gauge-
covariant derivative. The torsion’s potential function is the vector-valued 1-
form dP. Hence one may expect that the “canonical Kähler–Dirac equation”
will resemble something like
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­c 5 dP ∨ c (27)

As we later show, two different Kähler–Dirac equations are contained in Eq.
(27), depending on how dP is understood. There is an additional, simple
possibility. The reformulation of Finsler geometry as a KK geometry produces
the option that dp rather than dP itself is the factor a that we are looking
for, so that the equation

­c 5 dp ∨ c (28)

results. But then, where does the mass term hide? More importantly, how
could a theory such as this one, based on classical differential geometry,
account for the unit imaginary and " and for the probabilistic nature of QM?

The issue of the unit imaginary is relatively simple. As Hestenes (1966)
has shown, the unit pseudoscalar, to name just one example, can play the
role of the unit imaginary. In our case, a different unit imaginary may be
already implicit in Eq. (27), depending on how we view dP. To make the
point clear, consider the familiar case of the representation of xi 1 yj 1 zk
in Clifford algebra. We may think of xi 1 yj 1 zk as the spatial projection
in spacetime of xm em or as the radius vector in 3-space. Let si represent a
canonical basis in 3-space and let gm represent a canonical basis in spacetime.
The spatial projection will be given as xigi and the radius vector in 3-space
as xisi , which can be rewritten as xigi ∨ g0. In our case, we may view dP
as a projection on spacetime of dp or as the translation element of spacetime.
In the first case, dP is given by vmgm. In the second case, it is given by v8m

em ∨ e4. Expressing these quantities in terms of the v8m and ams, the vector
u, whose square is minus one, emerges as a factor and thus may play the
role of the unit imaginary. Full details cannot be addressed here. We hope
to have shown, however, that there are natural options for geometric unit
imaginaries to appear in Kähler–Dirac equations and that perhaps one of
these units is already contained in Eq. (27), depending on which dP we have
in mind when we write this equation.

The issue of the mass term, although also conjectural at this point, could
be understood in terms of a reformulation of the canonical Kähler–Dirac
equation. It refers to pure Kähler–Dirac fields, unlike the dualistic Dirac
equations of the physics, which deals with particles in fields. That equation
is constituted by a collection of component equations, each of which couples
forms of different ranks (through the exterior and interior derivatives) and
of different valuedness (through exterior and interior multiplication by the
vector-valued translational element). Each of these component equations
represents the equality of two integrands, and thus the equality of their
integrations. There will be physical problems, or approximations to physical
problems, where one may manipulate these integrands, separating the “test
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particle” from the particles that are described in the form of the external
field, thus giving rise to a dualistic description and its associated wave
function. Such a course of action may in principle give rise to the mass term
on the one hand and to the charge factor in the external field term on the other.

The issue of " is far more subtle and requires a lengthy explanation. It
is postponed to the next section. We proceed to discuss gauge transformations.
These transformations here emerge in the tangent bundle of the KK space,
rather than in some ad hoc internal space. The group SU(2) of microphysics
is already latent in the fibers of the Finsler bundle of macrophysics in the
form of the group O(3) of its fibers (Vargas and Torr, 1999a). We shall now
discus U(1). It is well known that rotations, whether regular or hyperbolic
(boosts), are given by exponentials of bivectors in Clifford algebras. Transla-
tions, on the other hand, are conspicuously absent from these algebras. The
Finsler bundle of frames introduces two major modifications in the relation
of the transformations in the Euclidean–Poincaré groups and the algebras
themselves. First, boosts have disappeared from the groups in the fibers of
Finslerian fibrations. They have not, however, disappeared altogether, since
they are still present in the horizontal forms of the base space, namely in the
connection forms vi

0. In the reformulation of Finsler geometry as a KK theory,
the boosts appear in the following way. Rewrite the equation for the metric as

v0 ? v0 2 ds ? ds 5 v1 ? v1 1 v2 ? v2 1 v3 ? v3 (29)

It is clear that the ordinary rotations alter the individual terms on the right-
hand side without altering their sum. Equivalently, a 1-dimensional boost in
(t, s) subspace does not alter the left-hand side of Eq. (29). Associated with
a 3-dimensional interval given by a specific evaluation of the 1-forms (v1,
v2, v3), we can change ds and v0 in such a way that v0 ? v0 2 ds ? ds does
not change. Thus, the second major modification is that a translation between
two spacetime points separated by some (specific evaluation of the linear
forms) vi is now represented by a boost in the cotangent subspace spanned
by (v0, ds). The translation uses up a time v0, equivalently a proper time
ds, the two being related as in a relativistic boost. So, translations also have
to do after all with Clifford algebras.

According to this picture, the group SO(1,1) is the group of boosts in
the two-dimensional subspace of KK spanned by ds and v0. Locally, SO(1,1)
is isomorphic to SO(2), whose spinorial equivalent is U(1). Hence the U(1)
group of electrodynamics is actually a group of (phase)-spacetime symmetries.
In other words, it is classical differential geometry as these transformations
are directly related to the tangent–cotangent bundle complex, rather than to
any internal symmetry. The group SU(2) has a similar origin, namely related
to the subgroup of rotations of the tangent Lorentz group. In the Finslerian
refibration of the set of inertial frames, the rotations and boosts part ways
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to some extent. In the KK refibration of the Finsler structure, the boosts
disappear as such, but reemerge as boosts in just one spatial dimension. A
similar view of electroweak theory as spacetime theory has been indepen-
dently developed by Pandres (1998, 1999). Although he does not state it
explicitly in his papers, Pandres agrees that he is doing TP (private communi-
cation). He does not think that his theory needs the Finslerian setting to be
justified. We claim that, when the Pandres theory is viewed as pertaining to
this setting, one cancels the potential criticism that EM fields in one frame
become electroweak mixtures in a boosted frame. Finally, the issue arises of
where SU(3) lies. Elaborating on pioneering work by Chisholm and Farwell
(1992), it has been shown that the complexity of the internal structure of the
strong interactions can be based on orientation groups in Minkowski space
geometry (Schmeikal, 1996). This work carries over to the tangent vector
space of teleparallel manifolds through the identification of all tangent vector
spaces. In our development of FTP, we have not yet made contact with SU(3)
because we have barely started to study the Clifford structure of our formalism.

Note that we have obtained the explanation of why the phase factor
rather than the phase matters in the standard version of electrodynamics (Wu
and Yang, 1975) (recall that the phase is a multivalued function of the phase
factor). The lack of physical meaning of the information that is contained in
the phase, but not contained in the phase factor, has to do with the fact that
we are using as symmetry group eiw rather than ew (to be precise, eaw, as
explained in the next paragraph). This last factor contains the same informa-
tion as w since the function f 5 arg(ew) is single-valued, unlike f 5 arg(eiw).
Let us now give an indication of why nonunitarity is not a problem.

To make matters simple, we have compared eiw with ew. In reality, we
should have compared eiw with eaw, where a is a tangent vector whose square
is 11 (tangent vector here means an element of the direct sum of the tangent
vectors to M 4 and M21). It represents a boost in a 2-dimensional subspace
that is a remnant of the ordinary form of these boosts. The probability density
will not be conserved because it indeed should-not be conserved under boosts.

8. ON THE RELATION OF GRAVITATION TO QUANTUM
MECHANICS

A completely geometric Kähler–Dirac equation gives rise to a com-
pletely geometric current, which specifies the interior covariant derivative of
the torsion through Eq. ( ) and achieves the geometric closure of the system
of field equations. The depth of the relation between GR and QM goes
beyond the coexistence of the Kähler–Dirac and gravitational field equations
in this system. It has to do with the nature of its initial value problem and,
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specifically, with the fact that the full curvature and not just the Einstein
tensor is given. Let us start by considering the initial value problem in GR.

In GR, one postulates the Einstein tensor and integrates the field equa-
tions to obtain the metric and thus the full metric curvature, i.e., the Einstein
and the Weyl tensors. It seems as if one gets out of the field equations more
(the Weyl tensor) than one puts in. The additional information on the curvature
is contained in the initial conditions for the Cauchy problem of GR. It is
then clear that, if the field equations specify not only the Einstein tensor, but
also the full tensor, one is going to have a completely different, actually
trivial, Cauchy problem, as we now describe. First, one should observe that
the mere fact that the solving of the Cauchy problem of GR requires such
initial conditions does not bode well for the problem of quantization of GR,
after first assuming that gravity has to be quantized. What does a graviton
care about initial conditions on a hypersurface?

To make matters simple, we proceed with the problem of initial condi-
tions in three steps. When the affine curvature is zero, the system of equations.

dvm
l 2 vn

l ∧ vm
n 5 0 (30)

on the bundle of bases of affine space is integrable. In addition, the system
dem 5 vn

men, itself is integrable. Through integration, it yields the linear group,
namely em 5 An

man in terms of some fixed basis (an). The n2 integration
constants, An

m are the entries of the most general nonsingular n 3 n matrix.
This process, however, does not yield a formula for comparing a basis (am)
at a point of coordinates (xm) with a basis (bm) at an arbitrary point (x8m),
which is the actual situation that one faces when there is not integrability.
For this, we have to integrate dem 5 vn

men along a line, with (am) as initial
condition. Any line will do, since TP makes this integration path independent.

We go one step further, namely to the case when we have zero torsion
and zero affine curvature (i.e., in locally affine spaces like planes, cones, and
cylinders). The integration of the system of equations dP 5 vnen and dem 5
vn

men between points (xm) and (x8m) is independent of path and gives us the
pair (P, em) attached to (x8m) in terms of the initial conditions (Q, am) at (xm).

In the third step, we consider nontrivial TP, i.e., nonzero torsion and
zero affine curvature. As in locally affine space, one still has to integrate for
the frame (P, em), after integrating for both the translational and linear part
of the connection. The result for the integration of the translation now is
path dependent and plays the role of the integration of Am dxm, since dP
generalizes the EM potential. As for the obtaining of the metric itself, it does
not alter in a significant way the process just described. The 4-dimensional
metric is simply the product dP ? dP.
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We present an example of a sophisticated system of nonlinear field
equations with initial conditions at a point. Assume the Minkowski metric.
Define the tensor b 5 Il

mrem ^ el ^ er. If we set db 5 0, we get

dGn
nl 1 (Ga

mlGn
sr 2 Gn

flGa
mr 2 Gn

msGa
lr) dxr 5 0 (31)

These are the Muraskin equations, which we name after Murray Muraskin
for the very large number of computer studies that he performed on them
(Muraskin, 1995). As discussed elsewhere (Vargas and Torr, 1997b), this
system of equations is very similar to typical systems of equations satisfied
by the torsion, except that, since we are now dealing with a tensor-valued
0-form, we have total differentials instead of exterior and interior covariant
derivatives (read differentials). It has as initial conditions the Gm

ml at a point.
One can chose initial values such that solitonic solutions arise. In Muraskin’s
interpretation, these solutions might represent (a) bounded, multi-wavepacket
solutions without uncontrollable spreading, (b) vacuum, the region between
the packets, constituted by very close small oscillations with a band structure
which (c) evolves spontaneously into the packets, back into the vacuum, back
into the packets, etc. The field equations of the vacuum are the same as in
the spacetime occupied by the packets themselves. The difference between
particles and vacuum lies simply in the particular form that the solution takes
in a given piece of spacetime, i.e., packet or background. The picture that
this implies for the system of equations emerging for TP from the marriage
of Clifford algebra and Finsler geometry is that of (a) bosonic solutions (the
vacuum plus its packets) for J 5 0 and (b) fermionic solutions where the
macroscopic and microscopic solutions couple through J.

The above applies only if there is only one source of torsion. Suppose
that we had many source points of torsion, at least as many as there are
sources of EM radiation in the universe that contribute to the background
(including thermal and zero point) at any particular spacetime point. We
would have to switch initial conditions in each one of them, rather than just
at one point. These individual sources would give rise to their own, modulated
backgrounds, which would interfere with each other in a nonlinear (the system
that the solutions obey is not linear) and completely nontraceable way. A
stochastic torsion background seems to be the natural outcome of this situa-
tion. The connection of spacetime is therefore stochastic and effectively
nondeterministic, given the unfathomable background of which the bosonic
(soliton) solutions make part and in which the fermionic solutions live. Thus,
if the picture that has emerged in this paper works, the representation in
the Kähler–Dirac equation of the stochastic process that emerges from the
boundary conditions for teleparallelism would be in the ", since it is the
nonzero value of " which is at the root of the nondeterministic character of
QM. Incidentally, the nonlinear nature of the field equations satisfied by the
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vacuum implies that a given background may look very different in the
proximity and far away from matter, the differences being just a matter of
scale in the linear case.

It remains to be seen what effects this stochasticity has for gravitation.
Consider, for instance, the region around a neutral mass at distances large
by comparison with the size of the mass. In the absence of any (stochastic)
background, the torsion field would clearly be zero at those distances and
so would the affine curvature, by hypothesis. The connection would therefore
be zero and we would have flat spacetime. Newton’s second law would not
work. But it does. It is the stochastic torsion background (read the vacuum
fluctuations) that invalidaes the argument for flat spacetime. According to
the picture that emerges here, Sakharov’s conception of gravitation as an
effect of vacuum quantum fluctuations (Sakharov, 1968) is not just a clever
idea for a theory of gravitation alternative to GR. It is actually consistent
with the theory of gravitation contained in FTP. The " of quantum physics
is intricately tied to fluctuations of the vacuum, which in turn is intricately
tied to gravitation. A zero-torsion field would not be found in vacuum. If at
all, it would be found in superconductors, away from its vortices.

9. CONCLUDING REMARKS

We have shown that Finslerian TP has a life of its own. When one lets
this life freely develop, as an alternative to trying to make it fit preconceived
physicists’ practices, a formidable theoretical framework emerges. Einstein
(1930a, b) tried TP as a fundamental postulate for one of his attempts at
unification. He expected that, if this or any other of his attempts had been
successful, QM would have become unnecessary. His TP was not Finslerian.
However, he might have recognized the need for it be so, had the Finsler
geometry and Clifford calculus of his time been more advanced. The irony
is that a geometric form of QM, embodied in a Dirac-type (i.e, Kähler’s)
equation, is an integral part of FTP, since it can be derived, canonically or
quasicanonically, from the horizontal differential invariants that define FTP.
In this way, the closed system of teleparallel field equations becomes fully
geometric, as he dreamt. Einstein had the right intuition in postulating TP.
With insufficient mathematical tools, he failed to guess the final form of
the script.
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Kähler, Erich (1960). Innerer und äusere Differentialkalkül, Abhandlunden der Deutschen

Akademie der Wissenschaften zu Berlin, 1960(4), 1–32.
Kähler, Erich (1961). Die Dirac-Gleichung, Abhandlunden der Deutschen Akademie der Wis-

senschaften zu Berlin, 1961(1), 1–38.
Kähler, Erich (1962). Der innere Differentialkalkül, Rendiconti di Matematica e Delle sue

Applicazioni, 21, 425–523.
Kopczynski, Wojciech (1982). Problems with metric-teleparallel theories of gravitation, Journal

of Physics A, 15, 493–506.
Mielke, Eckehard W. (1992). Ashtekar complex variables in general relativity and its teleparallel-

ism equivalent, Annals of Physics, 219, 78–108.
Mielke, Eckehard W. (1999). Anomaly-free solution of Ashtekar constraints for the teleparallel-

ism equivalent of gravity, Physics Letters A, 251, 349–353.
Müller-Hoissen, Fockert, and J. Nitsch (1985). On the tetrad theory of gravity, General Relativity

and Gravitation, 17(8), 747–760.
Muraskin, Murray (1995). Mathematical Aesthetic Principles, Nonintegrable Systems, World

Scientific, Singapore.



298 Vargas and Torr

Pandres, Dave (1998). Gravitational and electroweak interaction, International Journal of
Theoretical Physics, 37, 827–839.

Pandres, Dave (1999). Gravitational and electroweak unification, International Journal of
Theoretical Physics, 38, 1783–1805.
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pp. 83–100.

Vacaru, Sergiu I. (1997a). Locally anisotropic gravity and strings, Annals of Physics, 256, 39–61.
Vacaru, Sergiu I. (1997b). Superstrings in higher order extensions of Finsler superspaces,

Nuclear Physics B, 494, 590–656.
Vargas, Jose Gabriel, and Douglas Graham Torr (1993). Finslerian structures: The Cartan–

Clifton method of the moving frame, Journal of Mathematical Physics, 34(10), 4898–4913.
Vargas, Jose Gabriel, and Douglas Graham Torr (1996). Elementary geometries underlying the

theory of Euclidean connections on Finsler metrics of Lorentzian signature, Contemporary
Mathematics, 196, 301–310.

Vargas, Jose Gabriel, and Douglas Graham Torr (1997a). The emergence of a Kaluża–Klein
microgeometry from the invariants of optimally Euclidean Lorentzian connections, Foun-
dations of Physics, 27, 533–558.

Vargas, Jose Gabriel, and Douglas Graham Torr (1997b). The construction of teleparallel
Finsler connections and the emergence of an alternative concept of metric compatibility,
Foundations of Physics, 27, 825–843.
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